信息发布→ 登录 注册 退出

python向量化与for循环耗时对比分析

发布时间:2026-01-11

点击量:
目录
  • 向量化与for循环耗时对比
  • 向量化数据的相比于for循环的优势

向量化与for循环耗时对比

深度学习中,可采用向量化替代for循环,优化耗时问题

对比例程如下,参考Andrew NG的课程笔记

import time
import numpy as np
a = np.random.rand(1000000)
b = np.random.rand(1000000)

tic = time.time()
c = np.dot(a,b)
toc = time.time()
print(c)
print("Vectorized version: " , str(1000*(toc-tic)) + "ms")

c = 0
tic1 = time.time()
for i in range(1000000):
    c += a[i]*b[i]
toc1 = time.time()
print(c)
print("For loop version: " , str(1000*(toc1-tic1)) + "ms")

处理百万数据,耗时相差400多倍。

效果图:

向量化数据的相比于for循环的优势

例子

import numpy as np
import time
a = np.random.rand(1000000)
b = np.random.rand(1000000)
tic = time.time()

c = np.dot(a,b)
toc = time.time()
print©
print(“vectorized version:” + str((toc-tic))+“s”)

c1 = 0
tic = time.time()
for i in range(1000000):
c1 += a[i]*b[i]
toc = time.time()
print(c1)
print(“Nonvectorized version:” + str(toc-tic)+“s”)

结果

250487.97870397285
vectorized version:0.002000093460083008s
250487.9787039739
Nonvectorized version:0.957054615020752s

可以看出向量化后执行时间比使用for循环快478倍

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

在线客服
服务热线

服务热线

4008888355

微信咨询
二维码
返回顶部
×二维码

截屏,微信识别二维码

打开微信

微信号已复制,请打开微信添加咨询详情!